Mechanism of the kainate-induced intracellular acidification in leech Retzius neurons.

نویسندگان

  • W Kilb
  • W R Schlue
چکیده

We examined the effect of the glutamatergic agonist kainate on the membrane potential, the intracellular Na+ concentration ([Na+]i), the intracellular-free Ca2+ concentration, and on the intracellular pH of Retzius neurons of the medicinal leech, Hirudo medicinalis, in order to investigate the mechanism responsible for the intracellular acidification caused by glutamatergic stimulation. The recordings were made with Na+- and pH-sensitive microelectrodes and iontophoretically injected Fura-2. Bath application of kainate evoked a marked membrane depolarization, a [Na+]i increase, and an intracellular acidification. The intracellular acidification was unaffected by reversal of the electromotive force for H+, suggesting that an influx of H+ from the interstitial space does not contribute to the acidification. While the Ca2+ channel blockers La3+ and Co2+ had no effect on the kainate-induced intracellular acidification, suggesting that a Ca2+ influx via voltage-dependent Ca2+ channels was not relevant, the acidification was reduced in Ca2+-free saline solution. In Na+-free saline solution the kainate-induced intracellular acidification was absent, suggesting the involvement of Na+ influx in generating the acidification. When injected iontophoretically Na+ induced an intracellular acidification but Li+, K+, Rb+ or Cs+ did not. Furthermore, a [Na+]i increase induced by blocking the Na+/K+ pump also led to an intracellular acidification. We conclude that the [Na+]i increase is the crucial event underlying the kainate-induced intracellular acidification. Possible mechanisms linking the [Na+]i increase to the intracellular acidification are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of AMPA/Kainate Receptors but Not Acetylcholine Receptors Causes Mg2+ Influx into Retzius Neurones of the Leech Hirudo medicinalis

In Retzius neurones of the medicinal leech, Hirudo medicinalis, kainate activates ionotropic glutamate receptors classified as AMPA/kainate receptors. Activation of the AMPA/kainate receptor-coupled cation channels evokes a marked depolarization, intracellular acidification, and increases in the intracellular concentrations of Na+ ([Na+]i) and Ca2+. Qualitatively similar changes are observed up...

متن کامل

Coactivation of putative octopamine- and serotonin-containing interneurons in the medicinal leech.

Possible interactions between octopamine-immunoreactive (IR) and serotonergic neurons in the CNS of the medicinal leech were investigated. Simultaneous intracellular recordings of serotonin-containing neurons (either the Retzius neuron or cell 21) and the dorsolateral octopamine-IR (DLO) neuron demonstrated that both sets of neurons are coactive at times. Depolarization of either serotonergic c...

متن کامل

Initiation of swimming activity in the medicinal leech by glutamate, quisqualate and kainate.

The excitatory amino acid, glutamate, and several of its agonists are known to produce locomotory activity in the lamprey (Brodin et al. 1985), rat (Kudo and Yamada, 1987) and the embryos and larvae of amphibians (Dale and Roberts, 1984; McClellan and Farel, 1985). It is hypothesized that glutamate acts as a neurotransmitter in the neuronal pathway that generates locomotion in these systems. In...

متن کامل

The Effect of Sodium Nitroprusside on Resting Membrane Potential of the Leech Retzius Nerve Cells

We have investigated the effect of sodium nitroprusside (SNP) on the membrane resting potential of the leech (Haemopis sanguisuga) Retzius nerve cells (RNC). The membrane potential of RNC of isolated ganglia was recorded in Ringer solution, in SNP solution during the next 30 minutes and after washing out with Ringer solution. We used 1 mmol/L, 2 mmol/L and 5 mmol/L solutions of SNP. Kruskal-Wal...

متن کامل

Swelling-activated chloride channels in leech Retzius neurons.

During periods of high activity neurons are expected to swell due to the uptake of Cl(-). To find out whether leech Retzius neurons possess swelling-activated Cl(-) channels that facilitate Cl(-) efflux and, hence, volume recovery, we exposed the cells to hypotonic solutions. In hypotonic solutions, the cells slowly swelled but did not undergo a regulatory volume decrease. However, the cell vol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 824 2  شماره 

صفحات  -

تاریخ انتشار 1999